Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 22(14): 2835-2843, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511621

RESUMO

Activation of a silent gene cluster in Streptomyces nodosus leads to synthesis of a cinnamoyl-containing non-ribosomal peptide (CCNP) that is related to skyllamycins. This novel CCNP was isolated and its structure was interrogated using mass spectrometry and nuclear magnetic resonance spectroscopy. The isolated compound is an oxidised skyllamycin A in which an additional oxygen atom is incorporated in the cinnamoyl side-chain in the form of an epoxide. The gene for the epoxide-forming cytochrome P450 was identified by targeted disruption. The enzyme was overproduced in Escherichia coli and a 1.43 Å high-resolution crystal structure was determined. This is the first crystal structure for a P450 that forms an epoxide in a substituted cinnamoyl chain of a lipopeptide. These results confirm the proposed functions of P450s encoded by biosynthetic gene clusters for other epoxidized CCNPs and will assist investigation of how epoxide stereochemistry is determined in these natural products.


Assuntos
Sistema Enzimático do Citocromo P-450 , Depsipeptídeos , Streptomyces , Sistema Enzimático do Citocromo P-450/química , Peptídeos Cíclicos/química
2.
Biochemistry ; 63(6): 788-796, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38417024

RESUMO

In our efforts to develop inhibitors selective for neuronal nitric oxide synthase (nNOS) over endothelial nitric oxide synthase (eNOS), we found that nNOS can undergo conformational changes in response to inhibitor binding that does not readily occur in eNOS. One change involves movement of a conserved tyrosine, which hydrogen bonds to one of the heme propionates, but in the presence of an inhibitor, changes conformation, enabling part of the inhibitor to hydrogen bond with the heme propionate. This movement does not occur as readily in eNOS and may account for the reason why these inhibitors bind more tightly to nNOS. A second structural change occurs upon the binding of a second inhibitor molecule to nNOS, displacing the pterin cofactor. Binding of this second site inhibitor requires structural changes at the dimer interface, which also occurs more readily in nNOS than in eNOS. Here, we used a combination of crystallography, mutagenesis, and computational methods to better understand the structural basis for these differences in NOS inhibitor binding. Computational results show that a conserved tyrosine near the primary inhibitor binding site is anchored more tightly in eNOS than in nNOS, allowing for less flexibility of this residue. We also find that the inefficiency of eNOS to bind a second inhibitor molecule is likely due to the tighter dimer interface in eNOS compared with nNOS. This study provides a better understanding of how subtle structural differences in NOS isoforms can result in substantial dynamic differences that can be exploited in the development of isoform-selective inhibitors.


Assuntos
Óxido Nítrico Sintase Tipo III , Óxido Nítrico Sintase , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo I , Isoformas de Proteínas/química , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Heme/química , Tirosina , Óxido Nítrico
3.
J Med Chem ; 66(14): 9934-9953, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37433128

RESUMO

A series of potent, selective, and highly permeable human neuronal nitric oxide synthase inhibitors (hnNOS), based on a difluorobenzene ring linked to a 2-aminopyridine scaffold with different functionalities at the 4-position, is reported. In our efforts to develop novel nNOS inhibitors for the treatment of neurodegenerative diseases, we discovered 17, which showed excellent potency toward both rat (Ki 15 nM) and human nNOS (Ki 19 nM), with 1075-fold selectivity over human eNOS and 115-fold selectivity over human iNOS. 17 also showed excellent permeability (Pe = 13.7 × 10-6 cm s-1), a low efflux ratio (ER 0.48), along with good metabolic stability in mouse and human liver microsomes, with half-lives of 29 and >60 min, respectively. X-ray cocrystal structures of inhibitors bound with three NOS enzymes, namely, rat nNOS, human nNOS, and human eNOS, revealed detailed structure-activity relationships for the observed potency, selectivity, and permeability properties of the inhibitors.


Assuntos
Inibidores Enzimáticos , Óxido Nítrico Sintase , Ratos , Camundongos , Humanos , Animais , Óxido Nítrico Sintase Tipo I , Óxido Nítrico Sintase/química , Óxido Nítrico Sintase/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Relação Estrutura-Atividade , Óxido Nítrico
4.
J Inorg Biochem ; 244: 112212, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37058990

RESUMO

The strict requirement of cytochrome P450cam for its native ferredoxin redox partner, putidaredoxin (Pdx), is not exhibited by any other known cytochrome P450 (CYP) system and the molecular details of redox partner selectivity are still not completely understood. We therefore examined the selectivity of a related Pseudomonas cytochrome P450, P450lin, by testing its activity with non-native redox partners. We found that P450lin could utilize Arx, the native redox partner of CYP101D1, to enable turnover of its substrate, linalool, while Pdx showed limited activity. Arx exhibited a higher sequence similarity to P450lins native redox partner, linredoxin (Ldx) than Pdx, including several residues that are believed to be at the interface of the two proteins, based on the P450cam-Pdx complex structure. We therefore mutated Pdx to resemble Ldx and Arx and found that a double mutant, D38L/∆106, displayed higher activity than Arx. In addition, Pdx D38L/∆106 does not induce a low-spin shift in linalool bound P450lin but does destabilize the P450lin-oxycomplex. Together our results suggest that P450lin and its redox partners may form a similar interface to P450cam-Pdx, but the interactions that allow for productive turnover are different.


Assuntos
Cânfora 5-Mono-Oxigenase , Pseudomonas putida , Cânfora 5-Mono-Oxigenase/química , Oxirredução , Monoterpenos Acíclicos , Ferredoxinas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Pseudomonas putida/metabolismo
5.
Sci Adv ; 9(9): eade9609, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867707

RESUMO

While nitro and amino alkenes are common in pharmaceuticals, pesticides, and munitions, their environmental fates are not well known. Ozone is a ubiquitous atmospheric oxidant for alkenes, but the synergistic effects of nitrogen-containing groups on the reactions have not been measured. The kinetics and products of ozonolysis of a series of model compounds with different combinations of these functional groups have been measured in the condensed phase using stopped-flow and mass spectrometry methods. Rate constants span about six orders of magnitude with activation energies ranging from 4.3 to 28.2 kJ mol-1. Vinyl nitro groups substantially decrease the reactivity, while amino groups have the opposite effect. The site of the initial ozone attack is highly structure dependent, consistent with local ionization energy calculations. The reaction of the neonicotinoid pesticide nitenpyram, which forms toxic N-nitroso compounds, was consistent with model compounds, confirming the utility of model compounds for assessing environmental fates of these emerging contaminants.

6.
J Am Chem Soc ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36779970

RESUMO

Despite being one of the most well-studied aspects of cytochrome P450 chemistry, important questions remain regarding the nature and ubiquity of allosteric regulation of catalysis. The crystal structure of a bacterial P450, P450terp, in the presence of substrate reveals two binding sites, one above the heme in position for regioselective hydroxylation and another in the substrate access channel. Unlike many bacterial P450s, P450terp does not exhibit an open to closed conformational change when substrate binds; instead, P450terp uses the second substrate molecule to hold the first substrate molecule in position for catalysis. Spectral titrations clearly show that substrate binding to P450terp is cooperative with a Hill coefficient of 1.4 and is supported by isothermal titration calorimetry. The importance of the allosteric site was explored by a series of mutations that weaken the second site and that help hold the first substrate in position for proper catalysis. We further measured the coupling efficiency of both the wild-type (WT) enzyme and the mutant enzymes. While the WT enzyme exhibits 97% efficiency, each of the variants showed lower catalytic efficiency. Additionally, the variants show decreased spin shifts upon binding of substrate. These results are the first clear example of positive homotropic allostery in a class 1 bacterial P450 with its natural substrate. Combined with our recent results from P450cam showing complex substrate allostery and conformational dynamics, our present study with P450terp indicates that bacterial P450s may not be as simple as once thought and share complex substrate binding properties usually associated with only mammalian P450s.

7.
Bioorg Med Chem ; 69: 116878, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35772285

RESUMO

A series of potent, selective, and highly permeable human neuronal nitric oxide synthase inhibitors (hnNOS) based on the 2-aminopyridine scaffold with a shortened amino sidechain is reported. A rapid and simple protocol was developed to access these inhibitors in excellent yields. Neuronal nitric oxide synthase (nNOS) is a novel therapeutic target for the treatment of various neurological disorders. The major challenges in designing nNOS inhibitors in humans focus on potency, selectivity over other isoforms of nitric oxide synthases (NOSs), and blood-brain barrier permeability. In this context, we discovered a promising inhibitor, 6-(3-(4,4-difluoropiperidin-1-yl)propyl)-4-methylpyridin-2-amine dihydrochloride, that exhibits excellent potency for rat (Ki = 46 nM) and human nNOS (Ki = 48 nM), respectively, with 388-fold human eNOS and 135-fold human iNOS selectivity. It also displayed excellent permeability (Pe = 17.3 × 10-6 cm s-1) through a parallel artificial membrane permeability assay, a model for blood-brain permeability. We found that increasing lipophilicity by incorporation of fluorine atoms on the backbone of the inhibitors significantly increased potential blood-brain barrier permeability. In addition to measuring potency, isoform selectivity, and permeability of NOS inhibitors, we also explored structure-activity relationships via structures of key inhibitors complexed to various isoforms of nitric oxide synthases.


Assuntos
Aminopiridinas , Óxido Nítrico , Aminopiridinas/química , Aminopiridinas/farmacologia , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Óxido Nítrico Sintase , Óxido Nítrico Sintase Tipo I/química , Óxido Nítrico Sintase Tipo I/metabolismo , Isoformas de Proteínas , Ratos
8.
ACS Omega ; 7(22): 18481-18485, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35694512

RESUMO

A characteristic feature of cytochromes P450* is that the complex formed between the ferrous heme iron and carbon monoxide generates an intense absorption band at 450 nm. This unique feature of P450s is due to the proximal thiolate Cys ligand coordinated to the heme iron. Various harsh treatments shift this band to 420 nm, thereby giving P420 which is most often associated with an inactive form of the enzyme. Various explanations have been put forward to explain the P450-to-P420 change ranging from protonation of the Cys heme ligand, displacement of the Cys ligand, or replacement of the Cys ligand with His. There are two crystal structures of the well-studied cytochrome P450cam that have a high fraction of P420. In one, P450cam is cross-linked to its redox partner, putidaredoxin (Pdx), and the second is P450cam crystallized in the absence of substrate. In both of these structures, a significant part of the substrate pocket is disordered and the poor quality of the electron density for the substrate indicates substantial disorder. However, in both structures there is no detectable change in the Cys-iron ligation or surrounding structure. These results indicate that the P450-to-P420 switch is due primarily to an opening and disordering around the substrate binding pocket and not ligand displacement or ligand swapping. Since it remains a possibility that ligand swapping could be responsible for P420 in some cases, we mutated to Gln the 3 His residues (352, 355, and 361) close enough to the proximal side of the heme that could possibly serve as heme ligands. The triple variant forms P420 which indicates that swapping Cys for His is not a requirement for the P450-to-P420 switch.

9.
J Biol Chem ; 298(4): 101746, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35189143

RESUMO

AmphL is a cytochrome P450 enzyme that catalyzes the C8 oxidation of 8-deoxyamphotericin B to the polyene macrolide antibiotic, amphotericin B. To understand this substrate selectivity, we solved the crystal structure of AmphL to a resolution of 2.0 Å in complex with amphotericin B and performed molecular dynamics (MD) simulations. A detailed comparison with the closely related P450, PimD, which catalyzes the epoxidation of 4,5-desepoxypimaricin to the macrolide antibiotic, pimaricin, reveals key catalytic structural features responsible for stereo- and regio-selective oxidation. Both P450s have a similar access channel that runs parallel to the active site I helix over the surface of the heme. Molecular dynamics simulations of substrate binding reveal PimD can "pull" substrates further into the P450 access channel owing to additional electrostatic interactions between the protein and the carboxyl group attached to the hemiketal ring of 4,5-desepoxypimaricin. This substrate interaction is absent in AmphL although the additional substrate -OH groups in 8-deoxyamphotericin B help to correctly position the substrate for C8 oxidation. Simulations of the oxy-complex indicates that these -OH groups may also participate in a proton relay network required for O2 activation as has been suggested for two other macrolide P450s, PimD and P450eryF. These findings provide experimentally testable models that can potentially contribute to a new generation of novel macrolide antibiotics with enhanced antifungal and/or antiprotozoal efficacy.


Assuntos
Anfotericina B , Proteínas de Bactérias , Streptomyces , Anfotericina B/metabolismo , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Simulação de Dinâmica Molecular , Ligação Proteica , Streptomyces/química , Streptomyces/enzimologia , Especificidade por Substrato
10.
J Biol Inorg Chem ; 27(2): 229-237, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35064363

RESUMO

Three well-characterized heme peroxidases (cytochrome c peroxidase = CCP, ascorbate peroxidase = APX, and Leishmania major peroxidase = LMP) all have a Trp residue tucked under the heme stacked against the proximal His heme ligand. The reaction of peroxidases with H2O2 to give Compound I results in the oxidation of this Trp to a cationic radical in CCP and LMP but not in APX. Considerable experimental data indicate that the local electrostatic environment controls whether this Trp or the porphyrin is oxidized in Compound I. Attempts have been made to place the differences between these peroxidases on a quantitative basis using computational methods. These efforts have been somewhat limited by the approximations required owing to the computational cost of using fully solvated atomistic models with well-developed forcefields. This now has changed with available GPU computing power and the associated development of software. Here we employ thermodynamic integration and multistate Bennett acceptance ratio methods to help fine-tune our understanding on the energetic differences in Trp radical stabilization in all three peroxidases. These results indicate that the local solvent structure near the redox active Trp plays a significant role in stabilization of the cationic Trp radical.


Assuntos
Citocromo-c Peroxidase , Peroxidase , Cátions , Citocromo-c Peroxidase/química , Espectroscopia de Ressonância de Spin Eletrônica , Heme/metabolismo , Peróxido de Hidrogênio/química , Oxirredução , Peroxidase/metabolismo , Peroxidases/química , Triptofano/metabolismo
11.
Acc Chem Res ; 55(3): 373-380, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965086

RESUMO

This Account summarizes recent findings centered on the role that redox partner binding, allostery, and conformational dynamics plays in cytochrome P450 proton coupled electron transfer. P450s are one of Nature's largest enzyme families and it is not uncommon to find a P450 wherever substrate oxidation is required in the formation of essential molecules critical to the life of the organism or in xenobiotic detoxification. P450s can operate on a remarkably large range of substrates from the very small to the very large, yet the overall P450 three-dimensional structure is conserved. Given this conservation of structure, it is generally assumed that the basic catalytic mechanism is conserved. In nearly all P450s, the O2 O-O bond must be cleaved heterolytically enabling one oxygen atom, the distal oxygen, to depart as water and leave behind a heme iron-linked O atom as the powerful oxidant that is used to activate the nearby substrate. For this process to proceed efficiently, externally supplied electrons and protons are required. Two protons must be added to the departing O atom while an electron is transferred from a redox partner that typically contains either a Fe2S2 or FMN redox center. The paradigm P450 used to unravel the details of these mechanisms has been the bacterial CYP101A1 or P450cam. P450cam is specific for its own Fe2S2 redox partner, putidaredoxin or Pdx, and it has long been postulated that Pdx plays an effector/allosteric role by possibly switching P450cam to an active conformation. Crystal structures, spectroscopic data, and direct binding experiments of the P450cam-Pdx complex provide some answers. Pdx shifts the conformation of P450cam to a more open state, a transition that is postulated to trigger the proton relay network required for O2 activation. An essential part of this proton relay network is a highly conserved Asp (sometimes Glu) that is known to be critical for activity in a number of P450s. How this Asp and proton delivery networks are connected to redox partner binding is quite simple. In the closed state, this Asp is tied down by salt bridges, but these salt bridges are ruptured when Pdx binds, leaving the Asp free to serve its role in proton transfer. An alternative hypothesis suggests that a specific proton relay network is not really necessary. In this scenario, the Asp plays a structural role in the open/close transition and merely opening the active site access channel is sufficient to enable solvent protons in for O2 protonation. Experiments designed to test these various hypotheses have revealed some surprises in both P450cam and other bacterial P450s. Molecular dynamics and crystallography show that P450cam can undergo rather significant conformational gymnastics that result in a large restructuring of the active site requiring multiple cis/trans proline isomerizations. It also has been found that X-ray driven substrate hydroxylation is a useful tool for better understanding the role that the essential Asp and surrounding residues play in catalysis. Here we summarize these recent results which provide a much more dynamic picture of P450 catalysis.


Assuntos
Cânfora 5-Mono-Oxigenase , Ferredoxinas , Sítios de Ligação , Cânfora 5-Mono-Oxigenase/química , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/metabolismo , Ferredoxinas/química , Humanos , Simulação de Dinâmica Molecular , Oxirredução , Conformação Proteica
12.
Biochemistry ; 60(39): 2932-2942, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34519197

RESUMO

Cytochrome P450cam (CYP101A1) catalyzes the regio- and stereo-specific 5-exo-hydroxylation of camphor via a multistep catalytic cycle that involves two-electron transfer steps, with an absolute requirement that the second electron be donated by the ferrodoxin, putidaredoxin (Pdx). Whether P450cam, once camphor has bound to the active site and the substrate entry channel has closed, opens up upon Pdx binding, during the second electron transfer step, or it remains closed is still a matter of debate. A potential allosteric site for camphor binding has been identified and postulated to play a role in the binding of Pdx. Here, we have revisited paramagnetic NMR spectroscopy data and determined a heterogeneous ensemble of structures that explains the data, provides a complete representation of the P450cam/Pdx complex in solution, and reconciles alternative hypotheses. The allosteric camphor binding site is always present, and the conformational changes induced by camphor binding to this site facilitates Pdx binding. We also determined that the state to which Pdx binds comprises an ensemble of structures that have features of both the open and closed state. These results demonstrate that there is a finely balanced interaction between allosteric camphor binding and the binding of Pdx at high camphor concentrations.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cânfora 5-Mono-Oxigenase/química , Cânfora 5-Mono-Oxigenase/metabolismo , Cânfora/química , Ferredoxinas/metabolismo , Pseudomonas putida/enzimologia , Regulação Alostérica , Cânfora/metabolismo , Domínio Catalítico , Cristalografia por Raios X/métodos , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Pseudomonas putida/química
13.
Biochemistry ; 59(31): 2896-2902, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32574066

RESUMO

Cytochrome P450s are among nature's most powerful catalysts. Their ability to activate molecular dioxygen to form high-valent ferryl intermediates (Compounds I and II) enables a wide array of chemistries ranging from simple epoxidations to more complicated C-H bond oxidations. Oxygen activation is achieved by reduction of the ferrous dioxygen complex, which requires the transfer of an electron from a redox partner and subsequent double protonation to yield a water molecule and a ferryl porphyrin π-cation radical (Compound I). Previous studies of the CYP101 family of cytochrome P450s demonstrated the importance of the conserved active site Asp25X residue in this protonation event, although its precise role is yet to be unraveled. To further explore the origin of protons in oxygen activation, we analyzed the effects of an Asp to Glu mutation at the 25X position in P450cam and in CYP101D1. This mutation inactivates P450cam but not CYP101D1. A series of mutagenic, crystallographic, kinetic, and molecular dynamics studies indicate that this mutation locks P450cam into a closed, inactive conformation. In CYP101D1, the D259E mutant changes the rate-limiting step to reduction of the P450-oxy complex, thus opening a window into the critical proton-coupled electron transfer step in P450 catalysis.


Assuntos
Bactérias/enzimologia , Cânfora 5-Mono-Oxigenase/química , Prótons , Cânfora 5-Mono-Oxigenase/metabolismo , Cinética , Modelos Moleculares , Conformação Proteica
14.
Biochemistry ; 59(29): 2743-2750, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32551522

RESUMO

The bacterial cytochrome P450cam catalyzes the oxidation of camphor to 5-exo-hydroxycamphor as the first step in the oxidative assimilation of camphor as a carbon/energy source. CYP101D1 is another bacterial P450 that catalyzes the same reaction. A third P450 (P450tcu) has recently been discovered that has ≈86% sequence identity to P450cam as well as very similar enzymatic properties. P450tcu, however, exhibits three unusual features not found in P450cam. First, we observe product in at least two orientations in the X-ray structure that indicates that, unlike the case for P450cam, X-ray-generated reducing equivalents can drive substrate hydroxylation in crystallo. We postulate, on the basis of molecular dynamics simulations, that greater flexibility in P450tcu enables easier access of protons to the active site and, together with X-ray driven reduction, results in O2 activation and substrate hydroxylation. Second, the characteristic low-spin to high-spin transition when camphor binds occurs immediately with P450cam but is very slow in P450tcu. Third, isothermal titration calorimetry shows that in P450cam substrate binding is entropically driven with a ΔH of >0 while in P450tcu with a ΔH of <0 with a more modest change in -TΔS. These results indicate that despite nearly identical structures and enzymatic properties, these two P450s exhibit quite different properties most likely related to differences in conformational dynamics.


Assuntos
Cânfora 5-Mono-Oxigenase/metabolismo , Cânfora/metabolismo , Pseudomonas/enzimologia , Cânfora 5-Mono-Oxigenase/química , Domínio Catalítico , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Oxirredução , Conformação Proteica , Pseudomonas/química , Pseudomonas/metabolismo , Especificidade por Substrato , Termodinâmica
15.
J Med Chem ; 63(9): 4528-4554, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32302123

RESUMO

Inhibition of neuronal nitric oxide synthase (nNOS), an enzyme implicated in neurodegenerative disorders, is an attractive strategy for treating or preventing these diseases. We previously developed several classes of 2-aminoquinoline-based nNOS inhibitors, but these compounds had drawbacks including off-target promiscuity, low activity against human nNOS, and only modest selectivity for nNOS over related enzymes. In this study, we synthesized new nNOS inhibitors based on 7-phenyl-2-aminoquinoline and assayed them against rat and human nNOS, human eNOS, and murine and (in some cases) human iNOS. Compounds with a meta-relationship between the aminoquinoline and a positively charged tail moiety were potent and had up to nearly 900-fold selectivity for human nNOS over human eNOS. X-ray crystallography indicates that the amino groups of some compounds occupy a water-filled pocket surrounding an nNOS-specific aspartate residue (absent in eNOS). This interaction was confirmed by mutagenesis studies, making 7-phenyl-2-aminoquinolines the first aminoquinolines to interact with this residue.


Assuntos
Aminoquinolinas/farmacologia , Ácido Aspártico/química , Inibidores Enzimáticos/farmacologia , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Aminoquinolinas/síntese química , Aminoquinolinas/metabolismo , Aminoquinolinas/farmacocinética , Animais , Barreira Hematoencefálica/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Ensaios Enzimáticos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Mutagênese Sítio-Dirigida , Mutação , Óxido Nítrico Sintase Tipo I/química , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Permeabilidade , Ligação Proteica , Ratos , Relação Estrutura-Atividade
16.
Biochemistry ; 58(37): 3903-3910, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31456404

RESUMO

Human cytochrome P450 3A4 (CYP3A4) is a membrane-associated monooxygenase that is responsible for metabolizing >50% of the pharmaceuticals in the current market, so studying its chemical mechanism and structural changes upon ligand binding will help provide deeper insights into drug metabolism and further drug development. The best-characterized cytochrome P450 is a bacterial form, P450cam, which undergoes significant conformational changes upon binding substrate and its redox partner, putidaredoxin. In contrast, most crystal structures of CYP3A4 with or without ligands have shown few changes, although allosteric effects and multiple-substrate binding in solution are well-documented. In this study, we use double electron-electron resonance (DEER) to measure distances between spatially separated spin-labels on CYP3A4 and molecular dynamics to interpret the DEER data. These methods were applied to a soluble N-terminally truncated CYP3A4 form, and the results show that there are few changes in the average structure upon binding ketoconazole, ritonavir, or midazolam. However, binding of midazolam, but not ketoconazole or ritonavir, resulted in a significant change in the motion and/or disorder in the F/G helix region near the substrate binding pocket. These results suggest that soluble CYP3A4 behaves in a unique way in response to inhibitor and substrate binding.


Assuntos
Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Simulação de Dinâmica Molecular , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Humanos , Cetoconazol/química , Cetoconazol/metabolismo , Ligantes , Ligação Proteica/fisiologia , Conformação Proteica , Estrutura Secundária de Proteína , Ritonavir/química , Ritonavir/metabolismo
17.
Proc Natl Acad Sci U S A ; 116(25): 12343-12352, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31167942

RESUMO

Genes encoding cytochrome P450 (CYP; P450) enzymes occur widely in the Archaea, Bacteria, and Eukarya, where they play important roles in metabolism of endogenous regulatory molecules and exogenous chemicals. We now report that genes for multiple and unique P450s occur commonly in giant viruses in the Mimiviridae, Pandoraviridae, and other families in the proposed order Megavirales. P450 genes were also identified in a herpesvirus (Ranid herpesvirus 3) and a phage (Mycobacterium phage Adler). The Adler phage P450 was classified as CYP102L1, and the crystal structure of the open form was solved at 2.5 Å. Genes encoding known redox partners for P450s (cytochrome P450 reductase, ferredoxin and ferredoxin reductase, and flavodoxin and flavodoxin reductase) were not found in any viral genome so far described, implying that host redox partners may drive viral P450 activities. Giant virus P450 proteins share no more than 25% identity with the P450 gene products we identified in Acanthamoeba castellanii, an amoeba host for many giant viruses. Thus, the origin of the unique P450 genes in giant viruses remains unknown. If giant virus P450 genes were acquired from a host, we suggest it could have been from an as yet unknown and possibly ancient host. These studies expand the horizon in the evolution and diversity of the enormously important P450 superfamily. Determining the origin and function of P450s in giant viruses may help to discern the origin of the giant viruses themselves.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Evolução Molecular , Família Multigênica , Vírus/enzimologia , Sistema Enzimático do Citocromo P-450/genética
18.
J Med Chem ; 62(5): 2690-2707, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30802056

RESUMO

Effective delivery of therapeutic drugs into the human brain is one of the most challenging tasks in central nervous system drug development because of the blood-brain barrier (BBB). To overcome the BBB, both passive permeability and efflux transporter liability of a compound must be addressed. Herein, we report our optimization related to BBB penetration of neuronal nitric oxide synthase (nNOS) inhibitors toward the development of new drugs for neurodegenerative diseases. Various approaches, including enhancing lipophilicity and rigidity of new inhibitors and modulating the p Ka of amino groups, have been employed. In addition to determining inhibitor potency and selectivity, crystal structures of most newly designed compounds complexed to various nitric oxide synthase isoforms have been determined. We have discovered a new analogue (21), which exhibits not only excellent potency ( Ki < 30 nM) in nNOS inhibition but also a significantly low P-glycoprotein and breast-cancer-resistant protein substrate liability as indicated by an efflux ratio of 0.8 in the Caco-2 bidirectional assay.


Assuntos
Aminopiridinas/química , Barreira Hematoencefálica , Inibidores Enzimáticos/farmacologia , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Animais , Células CACO-2 , Inibidores Enzimáticos/química , Humanos , Permeabilidade/efeitos dos fármacos , Ratos
20.
J Am Chem Soc ; 141(6): 2678-2683, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30672701

RESUMO

It has become increasingly clear that cytochromes P450 can cycle back and forth between two extreme conformational states termed the closed and open states. In the well-studied cytochrome P450cam, the binding of its redox partner, putidaredoxin (Pdx), shifts P450cam toward the open state. Shifting to the open state is thought to be important in the formation of a proton relay network essential for O-O bond cleavage and formation of the active Fe(IV)═O intermediate. Another important intermediate is the oxy-P450cam complex when bound to Pdx. Trapping this intermediate in crystallo is challenging owing to its instability, but the CN- complex is both stable and an excellent mimic of the O2 complex. Here we present the P450cam-Pdx structure complexed with CN-. CN- results in large conformational changes including cis/trans isomerization of proline residues. Changes include large rearrangements of active-site residues and the formation of new active-site access channel that we have termed channel 2. The formation of channel 2 has also been observed in our previous molecular dynamics simulations wherein substrate binding to an allosteric site remote from the active site opens up channel 2. This new structure supports an extensive amount of previous work showing that distant regions of the structure are dynamically coupled and underscores the potentially important role that large conformational changes and dynamics play in P450 catalysis.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Domínio Catalítico , Ligantes , Simulação de Dinâmica Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...